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ABSTRACT

We present experimental results for a coordinated scheduling
implementation of the Linux operating system. Results were
collected on an IBM Blue Gene/L machine at scales up to 16K
nodes. Our results indicate coordinated scheduling was able to
provide a dramatic improvement in scaling performance for two
applications characterized as bulk synchronous parallel programs.

1. INTRODUCTION

As part of the HPC-Colony project' sponsored by the DOE’s FastOS program®, we are conducting
research on operating system (OS) issues on extremely large systems. In particular, we are actively
investigating scaling issues associated with system software including certain coordination aspects of our
smart runtime system and operating system. One key aspect of our work is concerned with correcting

problems associated with operating system jitter’- [JonesO3a, JonesO3b, Chakravorty06] Recently, we
had a chance to test the scalability of some of our approaches in those areas. We were able to start our
tests on configurations with a few thousand BlueGene/L. processors, and then increase the test
configuration to the full machine size, so that the scaling behavior of our techniques can be assessed. This
technical report describes the tests we conducted, the results we obtained, and the conclusions we could
draw from such experiments.

The remainder of this report is organized as follows. In Section 2 we briefly describe our motivation.
Section 3 describes the experiments that we conducted and provides the scalability results on large Blue
Gene/L configurations. Finally, Section 4 contains our conclusions and a summary of our achievements
during BGW-Day.

1 HPC Colony Project: http://www.hpc-colony.org

2 DOE office of Advanced Scientific Computing Research FastOS Program http://www.fastos2.org/

3 Note that operating system jitter is also commonly referred to as operating system noise or operating
system interference




2. TECHNICAL BACKGROUND AND EXPERIMENT MOTIVATION

2.1 IMPORTANCE OF OPERATING SYSTEM SCALABILITY

Operating and runtime systems provide mechanisms to manage system hardware and software resources
for the efficient execution of large scale scientific applications. They are essential to the success of both
large scale systems and complex applications and must track changes in programming paradigms and
computer architectures.

We are in a time of swiftly changing computer architectures and this has affected operating systems in
multiple ways. One of the more notable emerging computer architecture trends is the advent of wide-
scale parallelism — especially in the High Performance Computing (HPC) domain. Within the next 10
years, exascale computers with unprecedented processor counts and complexity will require significant
new levels of scalability and fault management. Advances in parallel systems in the last decade have
delivered phenomenal progress in the overall capability available to a single parallel application.
According to the November 2009 Top500 survey, sixty-two systems now have a peak capability of over
100TF and five systems have a peak exceeding 1 PF. This is accomplished with ever increasing node
counts and five systems now have total core counts exceeding 100,000. [Top500]

Under such core counts, full-featured operating systems such as Linux have shown a deleterious effect on
parallel programs. Full-featured operating systems incorporate many small tasks as independent threads to
perform common tasks including hardware-health-monitoring, parallel file system activity, and so on. It
has been demonstrated that these independent activities result in an operating system jitter or interference
that causes scalability issues. [Jones03a, JonesO3b, FerreiraO8] For example, at the Association for
Computing Machinery (ACM) Supercomputing07 conference, Aroon Nataraj of the Tau team at the
University of Oregon reported 23% to 32% increase in runtime for parallel applications running at 1024
nodes and 1.6% noise operating system noise. [Nataraj07]

2.2 HOW OPERATING SYSTEM JITTER AFFECTS PARALLEL APPLICATIONS

Parallel programs are frequently implemented in the Bulk-Synchronous Single-Program-Multiple-Data
(SPMD) programming model. For this programming model, computation consists of one or more cycles
or timesteps (see ‘repeat’ cycle in Figure 1).

Processes

Time

Repeat
Local computation

Begin opening bamrier | .

End opening barrier

Communication
(optional)
----- -- — 5 Closing barrier
(optional)

Legend

[ Jcomputing  [EEEEbarrier or reduction [~ jcommunication [l waiting

Fig. 1: Bulk-Synchronous SPMD Model of parallel application. Each process of a parallel job executes
on a separate processor and alternates between computation and communication phases. Adapted from
Dusseau96.



Each cycle may contain one or more synchronizing collective operations — an operation in which a set of
processes (frequently every process) participates and no single process can continue until every process
has participated. Examples of synchronizing collective operations from the Message Passing Interface
(MPI]) interface are MPI Barrier, MPI Allreduce, and MPI_Allgather. For example a parallel application
de51gned to simulate climate may use the MPI Allreduce operatlon to find the maximum pressure present
in an array distributed over all nodes; note that the overall maximum pressure cannot be determined until
every node has contributed its maximum. Synchronizing collective operations pose serious challenges to
scalability since a single instance of a laggard process will block progress for every other process.

Synchronizing collectives are common in parallel applications. Even though today’s most prevalent
operating systems, including Linux, do not include synchronizing collectives -- operating systems may
determine the scalability of a parallel application running in user-space if the parallel application contains
synchronizing collectives. When we speak of the scalability of an operating system, we are referring to
the operating system’s ability to support a parallel application without introducing scaling issues for the
parallel application. Adverse performance associated with synchronizing collectives would seem to
restrict their usage, but unfortunately synchronizing collective operations are required for a large class of
parallel algorithms. [Gupta91]

Operating systems impact synchronizing collectives in the following way. A cascading effect results
when one laggard process impedes the progress of every other process. The cascading effect has
significant operating system implications and proves especially detrimental in an HPC context: while
operating systems may be considered very efficient in a serial context, even minimal system and/or
daemon activity proves disastrous due to the cascading effect in the large processor count parallel
environment common in HPC centers. When interruptions occur on a subset of the computer nodes used
for a parallel application during a synchronizing collective (e.g. an interruption for operating system
activity such as a buffer flush), the degree of overlap is a key component in determining the performance
impact of the interruption event on the synchronizing collective operation.
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Legend
[  Time periods consumed by the parallel application
I Time periods where a non-application thread is scheduled by the OS
"1 Time periods where progress can be made across the entire 8-task parallel application

Fig. 2: Coordinated and uncoordinated schedulings. The above figure depicts two schedulings of the
same eight-way parallel application. In the lower depiction, co-scheduling increases the efficiency of the
parallel application as indicated by the larger amount of time periods where progress can be made across the
entire 8-task parallel application. The top legend is blue; the middle legend is red, and the bottom legend is
green. Adapted from Jones03a.



Figure 2 graphically portrays two separate runs of an eight-way parallel application with time as the x-
axis. In the top instance, system activity (denoted as dark-red rectangles) occurs at purely random times.
As a result, operations that require all eight processors to make progress are able to go forward only when
medium-blue is present across all eight processors vertically (at one point in time). The light-green
rectangles show those periods in time when the application is running across all 8 processors. In the
bottom portrayal, the same amount of system activity occurs (there is the same total amount of red) but it
is largely overlapped. This means much more time is available for parallel activities requiring all
processors, as shown by the larger green rectangles.

For clusters comprised of nodes with more than one core, both inter- and intra-node overlap is an issue.
Notice that if the eight cores in Figure 2 are spread across two 4-core nodes, it is desirable to ensure
overlap between nodes as well as on-node. The bottom run shows very good on-node overlap of operating
system interference, but does not fully achieve cross-node overlap of operating system interference.

2.3 COLONY’S APPROACH TO IMPROVING OPERATING SYSTEM SCALABILITY

Today, the primary operating system approach for mitigating parallel scalability issues is the lightweight
kernel. Lightweight kernels tradeoff generality for efficiencies in resource utilization, improved
scalability for large-scale bulk-synchronous applications, and simplicity of design. Resource utilization
differences between lightweight kernels and Linux-like full-featured operating systems include memory
footprint and overhead CPU cycles. Entire lightweight kernels may be 3 MB or less. Overhead CPU
cycles are reduced through the removal of various services like those provided by most daemons and
those associated with socket communication or asynchronous file I/O. Examples of a lightweight kernel
include the Puma operating system on Advanced Simulation & Computing (ASC) Red [Wheat94], the
Catamount operating system on ASC Red Storm, and the IBM Compute Node Kernel (CNK) operating
system on ASC BlueGene/L [AlmasiO3]. This technical report includes results from the CNK kernel for
comparison purposes.

Our research has focused on providing portable performance. To maximize the set of applications and
activities available, we chose a full-featured kernel — in our case Linux. Unlike lightweight kernels, full-
featured kernels support the full POSIX Applications Programming Interface (API) including calls for
spawning new processes (fork or clone), socket calls, memory mapping calls, and others not normally
found on lightweight kernels. They also support multiple threads and daemons (a typical paradigm used
by helpful programming development and debugging tools). In choosing a full-featured kernel, our
primary challenge becomes one of achieving high scalability.

The Colony Linux kernel achieves high scalability through coordinated scheduling techniques and other
strategies aimed at reducing operating system overhead. Coordinated scheduling (also referred to as
parallel aware scheduling) seeks to reduce the impact of operating system jitter. This is accomplished by
increasing the overlap of interruption activity (e.g., increasing the overlap of ‘red activity’ in figure 2).
Colony establishes two alternating intervals for activity across the entire parallel computer. During the
longer interval, the parallel application is scheduled (e.g., the ‘blue activity’ in figure 2). This is
accomplished by modifying the Linux scheduler to favor the parallel application with a high scheduler
priority. During a shorter interval, other necessary activities such as health-monitoring daemons, parallel
file system daemons, and so on, are scheduled (e.g., the ‘red activity’ in figure 2). During this period, the
normal Linux algorithms are used allowing delayed operating system activities to make progress. In this
way, interfering interruptions from daemon activity are minimized. [Jones03Db]



24 EXPERIMENT MOTIVATION AND NEW TECHNOLOGY TO BE EVALUATED

Our previous work incorporated coordinated scheduling through the use of a separate daemon. [Jones03b]
While that approach was a success, we were not able to achieve the tight time tolerances we desired. This
technical report presents our first results of incorporating coordinated scheduling into the actual operating
system kernel scheduler — an approach that permits much tighter time tolerances.

Earlier Colony kernel work focused on reducing the impact of translation lookaside buffer (TLB) misses
(a small but frequent performance detriment). Previous results for Big-pages with the Colony Linux
kernel show very good MPI allreduce scaling for today’s standards (e.g. compared to the ASC Purple
machine), but substantially below the BlueGene lightweight kernel (CNK). The results presented here
include our parallel aware scheduler that we designed for improved Linux scalability together with our
memory system changes.

Our tests were designed to measure the performance of our coordinated scheduling kernel strategies. We
conducted an assessment of our schemes on our parallel aware scheduler, a typical scheduler, and the
lightweight IBM CNK. We envision a computational environment where full Linux is one of a number of
choices for compute node system software, thus realizing a portable environment for large node count
supercomputers. [JonesO7] In order to realize this vision, the “noise” or “operating system jitter” usually
attributed to full Linux must not be prohibitive.

Operating system jitter may stem from many sources including timer decrement interrupts, TLB activity,
and interference from daemons and threads other than the parallel application running on the system. The
Colony Linux kernel mitigates the negative impact through a variety of techniques including a large-page
TLB design and parallel aware co-scheduling. The tests we performed provide a baseline for strategies we
are developing to provide excellent portability together with excellent scalability.






3. RESULTS

3.1 EXPERIMENT COMPONENTS

Two simple HPC applications were used during these experiments. Both are MPI programs that perform
reduction operations and measure node to node communications performance. As a result they are good
indicators of OS noise or interference, making them well suited to evaluation of the kernels used in these
experiments.

These applications were slightly modified to allow them to identify themselves to the kernel as the HPC
task. The kernel creates two files in /proc that applications can utilize to specify scheduling parameters as
well as to identify the HPC application. Only one of the kernels evaluated in these experiments leveraged
that information. A cleaner approach would have been to rely on the BlueGene I/O daemon to identify
the HPC application as it was launched but this work was not possible in the available time. Both
approaches would work well and the one used is not significant for our purposes.

In addition, three different kernels were used for these experiments: IBM’s light-weight kernel known as
CNK and two Linux kernels created by the Colony project. Both of the Linux kernels used 64KB
memory pages instead of the standard 4KB pages to minimize TLB miss effects. One of the Linux
kernels also incorporated ‘“coordinated scheduling” to dynamically modify scheduler behavior.
Coordinated scheduling allocates computing resources to the HPC applications in an advantageous way
(possibly at the expense of background daemons and other tasks which may be delayed).

Finally, a separate “noise application” was developed to provide a tunable level of noise with
characteristics similar to that observed on HPC systems.

3.1.1 Computation Facilities

All experiments were carried out on the Blue Gene / L machine located at IBM’s T.J. Watson Research
Center during the 2008 BGW day. This is a 20K node machine; 16K nodes were available for Colony.

3.1.2 Application 1: Allreduce

The first application is called allreduce. As the name suggests it performs multiple all reduce operations
among all the available compute nodes. Consecutive reduction operations are performed, reporting the
time per task for each operation. The average elapsed operation time is reported at the end of each run; it
is the value that we focused on for these experiments.

3.1.3 Application 2: glob

The second application is called glob. The glob application is similar to allreduce in that it performs
reduction operations. However, it measures performance over a range of node counts. The node counts
cover the powers of two from two to the maximum number of nodes available. For each node count
500,000 operations are performed. The operation size is 32 bytes -- the size of a typical synchronizing
collective operation (e.g., finding the min or max for two double-precision objects).

This application uses sub-communicators so the performance on CNK is sub-optimal for node counts less
than the maximum for the block. The performance at the maximum is significantly better than the other
node counts because under those node counts BlueGene’s collective hardware cannot be utilized. We will
focus on the results for the maximum node count at each block size.



3.14 Kernel 1: Blue Gene/L. Compute Node Kernel

CNK is a flexible, lightweight-kernel for BlueGene/L compute nodes capable of running user MPI
applications at large scale. It is a "Linux-like" operating system from the application's point-of-view.
This is achieved by supporting a large subset of Linux compatible system calls. A portion of CNK’s
system calls required custom implementations (such as memory management system calls), but the
majority of system calls are "function shipped" to a program called CIOD running on the I/O Node. This
program serves as a proxy, replaying those system calls on a real Linux kernel and shipping the result
back to CNK. This allows CNK to achieve precise semantics of Linux system calls without the costly
code volume and effort needed to keep in-sync with Linux semantics. CNK has two process modes that
can be used to execute applications: coprocessor mode and virtual node mode. In coprocessor mode, the
application runs on 1 core, the 2nd core being used for communications offloading. In virtual node mode,
2 applications are executed, each on its dedicated core. It should be noted, however, that CNK does not
support dynamic process creation.

One of CNK's principal design points was to avoid OS noise. It runs one process at a time; therefore it
does not need to perform time-slicing or preemptive multitasking. It runs with a (TLB) memory map that
is statically chosen when the job is loaded. This static memory map completely avoids TLB misses that
can randomly degrade performance, particularly in large scale systems like BlueGene. The only instances
in which the kernel interrupts the application is when a hardware event occurs, a debugger request needs
processing, or an asynchronous signal is injected by the user.

3.1.5 Kernel 2: Colony Linux Kernel with unmodified Scheduler

The Colony Linux kernel is based on Linux version 2.6.16 from kernel.org. The original kernel source
was updated to support BlueGene/L hardware. A console driver and RAS driver were added in addition
to various changes to support the BlueGene/L platform. The default 4KB pages were replaced with 64KB

pages.
3.1.6 Kernel 3: Colony Linux Kernel with Coordinated Scheduler

The differences between this kernel and the kernel described in section 3.1.5 involve the scheduler. Two
/proc interfaces were created and the scheduler was modified to give priority to the HPC applications in a
coordinated fashion.

3.1.7 Noise Generation

The Colony Linux kernel described in section 3.1.6 normally generates little noise because there aren’t
many daemons or other tasks running. A more realistic supercomputer environment might have various
daemons running for various purposes (e.g. health of system monitoring, parallel file system activity, and
so on). These daemons will increase noise and undoubtedly impact HPC applications. To assess the
impact of noise we developed a simple program that was run in the background to create noise on every
compute node during some of the experiments.

The noise program repeatedly calculates pi using Leibniz’ method. The number of terms in each
calculation of pi is chosen at random. An upper-bound determined the maximum time spent on a
calculation. After each calculation the noise application performs a sleep for 500,000 microseconds.

By varying the upper-bound we were able to adjust the ratio of time spent doing calculations to sleeping
for the noise application. For example, an average 10,000 microsecond calculation followed by the fixed
500,000 microsecond sleep after each calculation was termed 2% Noise Overhead (the net effect of a
competing serial CPU-intensive job would be a 2% slowdown to the serial CPU intensive job). The noise
application spends the majority of its time sleeping but the random amount of work that it does while
calculating pi is a good source of noise.

The source code for our noise generation daemon is found in Appendix A.



3.2 OPERATION OF THE COLONY KERNEL

The Colony Linux kernel maintains two classes of runnable tasks: the parallel application, and everything
else. The parallel application cycles between phases of favored-priority and regular-priority. During
favored-priority, all other tasks and/or daemons are starved in preference to the parallel application. The
cycling between favored-priority and regular-priority is accomplished concurrently across the entire
machine. Therefore, it is impossible for daemon activity to interrupt any task of the parallel application
during an epoch of favored-priority. A full duration of favored-priority and regular-priority is termed a
single period. The duration for the favored cycle is termed the duty cycle.

The /proc interfaces, /proc/hpc/period and /proc/hpc/duty_cycle allow the HPC application to tune
scheduler behavior as well as identify itself to the kernel. These values represent the total time per HPC
application time slice plus the non-HPC application time slice. The period and duty cycle are measured in
processor cycles. The maximum period of Oxffffffff represents approximately 6 seconds on
BlueGene/L’s 700,000,000 cycles/second processor clock. The duty cycle represents the number of
cycles that will be devoted to the HPC application. Therefore, a duty cycle of Ox7{ffffff represents 50%
of the cycles in a period.

DuTY CYCLE EFFECTS ON ALLREDUCE (16K NODES)
Period of 6.135667 secs

37
36
35

34

TIME (US)

33

32

==& COLONY LINUX

== "COLONY LINUX W/NOISE"
30
0004000 00r40000 0r400000 4000000
0.001427 0.022843 secs 0.365503 secs 5.848058 secs
secs

Duty CYCLE (CPU CYCLES)

Fig. 3. Measuring the effect of “Duty Cycle”.

Figure 3 shows the effect of the duty cycle on the Allreduce application. These measurements were taken
on 16,384 nodes. The performance of the Allreduce application increased as the duty cycle was
increased. The average increase in performance was 3.33% for each increase in the duty cycle. Further
increases in the duty cycle were not reasonable due to the limited amount of cycles that would remain for
the non-HPC tasks. At a duty cycle of 0xf4000000, the remaining OxObfffff cycles leave a window of
opportunity of only a few scheduler ticks for the non-HPC tasks to run. Increases beyond 0xf4000000
showed little or no application performance improvement. At 0xfc000000 the performance increase
versus 0xf4000000 was less than 0.26 %. Increases in duty cycle beyond 0xfcO00000 showed no
improvement in HPC application performance.



The duty cycle and period are examined by the scheduler during each scheduler tick. Based on the CPU
timebase and the specified period and duty cycle, the scheduler determines if it should favor the HPC
parallel task or all other tasks. The idea is that the HPC task should be given the vast majority of CPU
cycles for a given period while other tasks receive some limited number of cycles at regular intervals.
The HPC parallel tasks are run with real time priority and FIFO policy that prevents background daemons
and other tasks from interrupting it. The non-HPC tasks are allowed to run during small windows of time
by reducing the HPC task’s priority and the scheduling policy, allowing other tasks a chance to run. To
assure the favored and regular intervals occur at the same time across nodes, the Colony Linux kernel
utilizes a hardware heartbeat present with BlueGene/L machines that provides a minimal amount of
discontinuity among the nodes. This leads to the scheduler ticks happening in concert on all nodes. As a
result the HPC task interruptions at the end of the duty cycle are also synchronized.

3.3 EXPERIMENT PROCEDURES

All applications and kernels were evaluated at various node counts to look for scaling issues. Those
experiments at 1K and 2K node counts were run on a BlueGene/L system in Rochester while the
remainders of tests were run on the IBM TJ Watson BlueGene/L system. A maximum of 16K nodes out
of a total of 20K nodes of the T.J. Watson BlueGene/L system were available for these tests.

The following node counts were utilized: 1024, 2048, 4096, 8192, and 16384. All blocks used a 128:1
compute node to IO node configuration. We believe that these experiments could be scaled to much
higher node counts and plan to pursue such experiments in the future. For most node counts a baseline
measurement was taken by booting the standard BlueGene/L system software (CNK kernel) to run glob
and allreduce. Data from CNK at 8096 nodes was not collected due to time constraints. Since glob takes
a significant amount of time to run, CNK data was also not collected for 4096 nodes

Figure 4 illustrates how the maxTermsPerCalc parameter of the Noise daemon determines the amount of
noise present during each experiment. This parameter allowed us to easily choose noise levels between 0
and 35% (see section 3.1.7 for description of noise overhead).

Noise Component

40.000
35.000
30.000
25.000
20.000
15.000
10.000

5.000

0.000

100,000 1,000,000 10,000,000

= "Highest Sample"

= "Lowest Sample"

Log Fit

Noise Contribution (%)

maxTermsPerCalc

Fig. 4. Noise injection made possible by the noise daemon.

10



For each Colony kernel, both glob and allreduce were run with and without the noise application running
in the background.

To examine the effect of the duty cycle this parameter was varied for the allreduce application at full scale
only. Since the period and duty cycle were passed as environment parameters during program launch a
variety of values could be easily tested in a relatively short time. The duty cycle values chosen were:
0x000f4000, 0x00f40000, 0x0f400000, and 0xf4000000.

Figure 5 portrays how noise level affects the Allreduce program. We collected “noise-impacted” results
with two separate noise levels. The first value was selected to be a typical noise level consistent with full-
featured operating systems in a typical supercomputing center. For this value, 2% noise was used. The
second value was chosen to be a “moderate level of noise” indicative of the amount of background
activity one might encounter with an active parallel file system with buffered I/O, or perhaps a separate
program development daemon such as a profiling or memory tool. Due to the non-linear fashion of
performance impact in the presence of noise, we limited the “moderate” setting to 21%.

Allreduce Time on vanilla Linux for 1K Nodes

3000.0
2500.0
2000.0

1500.0

time (seconds)

1000.0
500.0
0.0

17.0 18.0 19.0 20.0 21.0

Noise Contribution (%)

Fig. 5. Measuring scaling performance of Allreduce in the presence of OS Jitter.

Both Allreduce and GLOB are able to perform all their work within this window of Oxbffffff cycles if the
number of terms in its calculation is kept below approximately 21% (maxTermsPerCalc = 5.9 million
terms). Beyond 21% yields rapidly increasing Allreduce and GLOB run times.

3.4 OVERALL MEASUREMENTS

Our tests were designed to measure the effectiveness of our coordinated scheduler strategy — a parallel
aware scheduler that we developed for improved Linux scalability in the presence of noise or jitter. The
coordinated scheduler dramatically improved performance results.

We also measured the coordinated scheduler for added overhead when no jitter is present. The behavior
of the unmodified scheduler without the noise program running and the Colony coordinated scheduler
(with and without noise) were almost identical. The Colony Linux kernel was successful at mitigating the
effect of the noise program and prevented any significant increase in Allreduce run time.
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3.5 COLONY KERNEL BENEFIT DURING MODERATE NOISE

To determine the impact under moderate noise, we utilized the noise daemon to provide a 21% level of
noise and ran it concurrently on the same nodes as a parallel application. The well understood Allreduce
and GLOB parallel scaling codes were used and results were collected for up to 8192 processors. As we
predicted, a moderate level of noise caused tremendous variability in common MPI operations for Linux
without enhanced scheduling; measurements for individual operations ranged from about 4 microseconds
to over 9900 microseconds. Next we turned on the parallel-aware coordinated scheduling and the
variability for individual operations dramatically reduced -- the overall runtime for one of the tests
reduced from 3175.7 seconds to 1.73 seconds!

Allreduce
10000
1000 —@—Colony (21% noise)

g 100 —— Colony (quiet)

.“E’ 10 Colony with SchedMods (21% noise)
|_

1 P E— | Colony with SchedMods (quiet)
— * 2 — —*—CNK
0.1 -
1024 2048 4096 8192
Node Count

Fig. 6. Measuring scaling performance of Allreduce in the presence of 21% OS Jitter.

The CNK kernel demonstrated the best scaling performance in most cases; the exception was glob
performance of glob for processor counts less than the full partition count. Here, Colony with
coordinated scheduling performed best of the three. The reasons for this are not fully understood but
possible explanations are given below. GLOB showed nearly identical behavior where there was no noise
interference or the when the Colony Linux kernel was used. Again the Colony Linux kernel was able to
eliminate almost all the impact of the noise application.

GLOB
10000
1000
g —®@— Colony (21% noise)
8
8 .
% 100 —#— Colony (quiet)
E Colony with SchedMods (21% noise)
= x ———R
10 e Colony with SchedMods (quiet)
—*—CNK
1 T
1024 2048 4096 8192
Node Count

Fig. 7. Measuring scaling performance of GLOB in the presence of 21% OS Jitter.
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3.6 COLONY KERNEL BENEFIT DURING LOW NOISE

We then reduced the level of noise from 'moderate' to 'low' (2% noise). Under low noise conditions, the
parallel-aware coordinated scheduling typically resulted in about a 10% improvement in overall runtimes.

ALLREDUCE Results
40
35
A}
30 = —*¢— Colony (2% noise)
/ s —
m 25 - —®— Colony (quiet)
a ;
§ 20 A
g 15 Colony with SchedMods (2% noise)
g
10 Colony with SchedMods (quiet)
5
¥——¢—X X —%—CNK
0 T T T
1024 2048 4096 8192 16384
Node Count

Fig. 8. Measuring scaling performance of Allreduce in the presence of 2% OS Jitter.

On average the glob application performed just over 12% better on the Colony Linux kernel with
coordinated scheduling versus typical Linux scheduling during small amounts of noise.

GLOB Results
80
70 2]
60 / —¢— Colony (2% noise)
i 50 '" —#— Colony (quiet)
8 40 '
: Colony with SchedMods (2% noise)
£ 30
E
20 Colony with SchedMods (quiet)
10
*—X X —*—CNK
0
1024 2048 4096 8192 16384
Node Count

Fig. 9. Measuring scaling performance of GLOB in the presence of 2% OS Jitter.
3.7 OVERHEAD OF COORDINATED SCHEDULING
We measured the overhead associated with our coordinated scheduling by making a series of

measurements with no noise. The overhead was very low; in fact, many times the coordinated scheduling
kernel actually ran faster than the kernel with standard scheduling.
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4. CONCLUSION & JUDGEMENTS OF NEED

Our experimental results enabled us to verify that our approach of full Linux for large systems such as
Blue Gene is scalable enough to be a valid option. The results that we obtained indicate that scaling for
parallel aware Linux is noticeably improved over standard Linux scheduling. Indeed, some tests ran
quicker on parallel aware coordinated scheduling Colony than on IBM’s lightweight CNK kernel. The
modifications to Linux proved to be a benefit when OS noise was present and, in fact, were better than the
IBM CNK lightweight kernel in a few instances.

Since we chose to design our Colony Linux Kernel from a base 2.6.16.27 kernel, its coordinated
scheduling capability should have wide application. Our results show it is possible to allow useful
daemons while still providing a scalable system software infrastructure. We were able to demonstrate
scalability while allowing the 'noise' or 'interference' levels associated with useful daemons (e.g.
asynchronous I/O daemons, health of system daemons, and even other more invasive daemons for the
HPC environment including program development, analysis, and debugging daemons).

Together, these results provide ground-breaking evidence that Linux modified with an effective
coordinated scheduling scheme can provide excellent HPC scalability.

The overall benefit from coordinated scheduling during moderate noise was dramatic -- the overall
runtime for one of the tests reduced from 3175.7 seconds to 1.73 seconds. Similarly, the coordinated
scheduling benefit during low noise was very beneficial typically resulted in a 10% to 12% improvement
in overall runtimes. The measured overhead of coordinated scheduling was very low; in fact, many times
the coordinated scheduling kernel actually ran faster than the standard kernel.

In addition, we note that the Colony Kernel with coordinated scheduling provides multiple benefits as a
lightweight CNK alternative. Obvious benefits include (a) a full POSIX API; (b) access to a huge list of
development tools like symbolic debuggers, memory allocation debuggers, performance profilers, and so
on; (c¢) and easier transitions between platforms for code teams. Other benefits might not be so obvious:
during our testing we noted a number of MPI operations that consistently ran faster on Linux than on
CNK. This points to areas of potential improvement in the CNK MPI implementation that would have
been hard to uncover without a CNK alternative such as Colony.

We plan to collect additional measurements of the Colony Linux Kernel with coordinated scheduling on
larger node counts. In addition, we plan to incorporate a software solution that obviates the need for
hardware time-synchronization heartbeat. Finally, we plan to enhance Colony’s ability to support adaptive
runtimes (including the Charm++ runtime) and overlay communication systems.
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APPENDIX A.1 NOISE DAEMON SOURCE

/I noise.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

#define SPRN_TBRL 0x10c
static inline unsigned int getTimebaseL (void)

{
unsigned tbl;

asm volatile ("mfspr %0,%1" : "=r"(tbl) : "i"(SPRN_TBRL));

return tbl;

int main(int argc, char** argv)

{

unsigned int maxTermsPerCalc = 1000000;

if (argc == 2)
maxTermsPerCalc = atoi(argv[1]);

srandom(getTimebasel());

while (1) {
unsigned int term;
unsigned int termsPerCalculation;
long double pi = 0.0;
long double denominator = 1.0;

termsPerCalculation = random() % maxTermsPerCalc + 10;

for (term = 0; term < termsPerCalculation; term++, denominator += 2.0) {
long double quotient = 4.0 / denominator;

if (term & 1)

/l Odd

pi -== quotient;
else

/I Even

pi += quotient;

}

/i printf("%.20Lf (%d terms)\n", pi, termsPerCalculation);
usleep(500000);

}

return 0;

Fig. Appendix A.1. Noise Daemon source.
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